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1. Intuitive Base 10 Pictograms

Base 10 Pictogram Metrics
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Base 10 Pictogram Metrics
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2. Energy Grid
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3. Pi Geometry without decimals










4. Ways to draw a line
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5. Fermat's Triangle Duct Design
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6. One Button Programmable Binary Computer
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7. Sine Spiral Graphing Helix Trigonometry

The Unit Circle is a front view of a helix spiral.

The Cosine Wave is a top view of a helix spiral (X).
The Sine Wave is a side view of a helix spiral (Y).
The Z axis represents Time (Z).

XYZ forms a helix spiral.

There can also be spirals around spirals recursively that represent complex circular motion.
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Sine Spiral Graphing

A new method of graphing motion called "Sine Spiral Graphing" was developed by me
when I was 16. It allows for simultaneously graphing the sine and cosine curves of an object
in motion, three-dimensionally. Sine and cosine, when graphed simultaneously in two
dimensions, look like two staggered intersecting waves traveling in the same general
direction. (Fig. 1) There has been a need for developing better methods of graphing an object’s
two-dimensional (flat) motion through space over a period of time that more clearly shows the
progression of travel. At present, mapping three-dimensional motion using different variables
is more complicated, but could be a further application of the principles presented in the "Sine
Spiral Graphing" method. The "Sine Spiral" is based on the spiral shape of two-dimensional
circular motion graphed in three dimensions using this new graphing technique. The name is
derived from the general name of the sine wave combined with what the actual 3D graph
looks like: a spiral. This technique could be helpful for scientists and students alike in many
applications. Some possible application for the Sine Spiral could be:

- Plotting the motion of a bead in a hula hoop as it spins around one's waist.

- Calculating the position of various atomic/subatomic particles moving in relation to each
other over time.

- Plotting the velocity and position of a point on an automobile wheel as sit spins down a
runway or curvy hilly road.

- Plotting the motion of a baseball spinning through the air as it travels forward to the catcher
over a period of time.

- Calculating the motion of a point on a bowling ball as it rolls down the lane over time.

- Calculating the speeds and positions of a set of points, on various gears at work, in a clock
in relation to each other over time.

- Calculating the motion of a point on a rocket ship, or of a point on a space satellite as it
orbits a planet.

- Plotting the movement of a chicken in a tornado.

All of these examples listed present graphing difficulties when depicted on a normal graph.
The motions in these examples could be calculated on a computer and represented in a
simulated fashion to show the actual movement in space for one point in time at a time.
Concurrent Sine Spiral graphs can also be drawn for comparison of points on multiple
moving objects. However, it would be difficult to graphically represent these motions for all
points in time all at once. A simulation could be like a video, where one can only view one
place on the video at a time. Viewing forward and reverse at the same time is not logistically
possible on a video. However, when motion is three-dimensionally graphed on a computer
using a Sine Spiral, it is possible to view these motions for all points in time all at once. A
very effective way to manipulate and browse three-dimensional graphs (such as a Sine Spiral)
on a computer is with Virtual Reality equipment. With Virtual Reality equipment, the
perspective of the viewer can freely move around in space (on the graph) and see the 3D
objects in one's graph from any perspective. In a Virtual Reality graph, the user can have total
conirol over what is viewed and how it is viewed.

Understanding the trigonometric functions of sine, cosine, tangent, and their inverse
counterparts is a necessity for understanding Sine Spiral Graphing. Trigonometric functions
of real numbers, called "Circular Functions" (or Wrapping Functions), can be defined in terms
of the coordinates of points on the unit circle with the equation x”2+y"2=1 having its center
at the origin and a radius of 1. (Fig. 2)

There are three elements in a two-dimensional trigonometric function: the angle of rotation
(sigma), the radius of the rotation r, and the (x.y) position of the point at that angle and radius.
As can be seen in Figure 3, the x and y portions of the graph are always perpendicular to each
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other. Thus a right triangle is formed between the x, y, and radius sides. Right triangle rules
can therefore be applied to this point in space (Brown/Robbins 190).

Such trigonometric functions as sine and cosine can be applied to the triangle formed by
rotation. These functions, sin and cos, are of fundamental importance in all branches of
mathematics. One can use points other than those on the unit circle to find values of the sine
and cosine functions. (Fig. 4) If a point Q has coordinates (x,y), and it is at angle sigma in
reference to the origin, (cos sigma) = x/r and (sin sigma) = y/r. To obtain a rough sketch of a
sine wave, plot the points (t, sin t) (Fig. 5), then draw a smooth curve through them, and
extend the configuration to the right and left in periodic fashion. This gives the portion of the
graph shown in Figure 5 (Swolowski 78).

A cosine can be graphed in the same fashion by simply shifting the graph 90 degrees to the
right. (Fig. 6) An object’s circular motion can be described by either a sine wave or a cosine
graphed in the same fashion. Such a wave is composed of the object's radius of rotation and
the period (number of degrees in on cycle) per unit of time that it rotates. Seeing an object's
sine and cosine graph simultaneously greatly helps in visualizing the object's motion
analytically compared how it found in real life. Watching an animation of an object spinning
is the same as seeing the x and y coordinates (cosine and sine) of the object for each frame of
the animation, one frame at a time. This is because one could see a scale view of its whole
two-dimensional motion over a period of time. Visualizing an object's true motion in nature
from merely looking at a graph of its sine or cosine can be difficult to conceptualize. For this
reason, the Sine Spiral may be an improvement in current co-linear graphing (Fig. 7).

Velocity over the period of one rotation on a sine curve can be measured by dividing the
distance traveled in one rotation by the amount of time it takes to complete that one rotation.
Velocity = change in distance/change in time + direction.

Any change in velocity (a change in time) will change the distance between peaks of the
spiral. The whole Z-axis around which the spiral revolves represents time passed. When the
velocity is constant, the distance from peak to peak in the spiral is constant or each distance
from one peak to another peak is the same. (Fig. 6) Therefore, if the distance from one peak to
another changes somewhere in the spiral, this indicates that the velocity has changed at that
point in time.

Within the Sine Spiral, some of the variables that can change in the object's motion are
velocity, radius of rotation, position of axis of revolution, and the scale upon which
measurements are based. The shape of this spiral is an indication of any and all of these
variables. The change in the shape of the spiral correlates to the change in one or more of
these variables. (Fig. 7)

Webster's Third New International Dictionary defines a spiral as "A three-dimensional
curve (as a helix) with one or more turns around and axis." In current circular motion, the sine
of the angle of rotation provides a Y value (Sine=Y/Radius of Rotation), while the cosine of
that same angle provides and X value (Cosine=X/Radius of Rotation). These X and Y values
are all that is needed to draw the two-dimensional models of rotation known as the sine curve
and the two-dimensional models of rotation known as the sine curve and cosine curve (or sine
wave). To my knowledge it has not been thought possible to graph this same motion in three
dimensions though, because one needs an X, Y, and Z coordinate in order to graph in 3D.
There can be an X and Y coordinate by finding the sine and cosine of a unit circle. All that is
needed is a Z coordinate to make the circular motion graphable in three dimensions.

That Z coordinate could be representable by time, or speed of rotation, or even the period
of degrees it takes for one complete rotation. In a sine wave, the period is 360 degrees. Using
the period of degrees in one rotation, one can find a constantly increasing Z coordinate by
dividing the current number of degrees traveled by the period of degrees it takes to complete
one rotation. In short, degrees/period. The period can be depicted by a set amount of time.
Finding a ratio between something that can be used as a reference point (one second v.s. the
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number of degrees in one rotation) to one's current progress in that measurement scale
(number of seconds that have passed v.s. number of degrees that have been traveled)
determine where one is on the Z-axis.

By dividing one's progress by a predetermined scale of reference, a new dimension can be
generated in which to plot on a graph in order to illustrate this in three-dimensional fashion.
This new dimension can be called the "Z-axis". Now that there is an X, Y, and Z dimension
available, a three-dimensional model of an object's progress through its path of circular
motion is possible.

For 3D motion, one can draw three spirals over the same T axis and where two of the
spirals intersect, plot a point. Connecting the dots between the points gives one a tri-spiral (a
spiral or shape that represents 3D motion over time). One can continue plotting the points
with several objects and where the tri-spirals intersect, the objects intersect. One can break
down the tri-spiral to find out where the X, Y, and Z coordinates are in space and the time
coordinates of the intersection.

To use the Sine Spiral to map the 3D motion throughout time, one could mark the spiral
with tags (or color code it) that tell one when and how far down the Z-axis it travels. Then to
graph several objects to compare their motions and positions to each other, one can have a
computer draw lines of the same color of the Z-tag, linking all of the objects that intersect on
the two planes like the ZX plane, or the ZY plane. That way, one could identify when objects
like planets line up on a plane or intersect.

There is much to benefit from in being able to graph an object's progress at the same time
as its position in space. One can see time from an outside perspective and also see how an
object's motion, position, and speed relate to any point in time. In many circumstances, it may
be very useful to finally be able to get to see the general shape of an object's travel through all
points in time all at once. This new method of graphing circular motion in three dimensions
is the "Sine Spiral",

The graph forms a regularly spaced spiral whose axis is a straight line equidistant from the
perimeter of the spiral. Changing the radius of rotation around a center axis changes the radius
of the spiral around the Z axis. Changing the center of rotation in two-dimensional space (X,
Y coordinates) makes the Z axis of the sign spiral curve up, down, or to the sides when
graphed (instead of the normal straight line Z-axis).

For instance, an air hockey puck pinning in place would have a regular sign spiral that
represents a point on the puck’s perimeter that is traveling in a circle. Now if the spinning
puck were to be slid across an air hockey table, that same point (on the perimeter of the puck)
would have an irregular sine spiral whose radius would be constant, but the Z-axis around
which the graph spirals would instantaneously bend at a ninety degree angle.

A computer can easily generate this three-dimensional picture of an object "N" at point "T"
in time if the speed of travel is irregular (or at the ratio of degrees traveled to the period of one
complete rotation if the speed is constant). (Fig. 8)

Graphing any two-dimensional motion (motion that moves in any direction on a flat
plane), or rotation in three-dimensions using time or progress as the third dimension allows
one to look at time from an outside perspective. The Sine Spiral can be used to graph any
such two-dimensional motion, or any number of combinations of such motion. It can be used
to graph several objects moving around in 2D (flat) space on the same plane. The Sine Spiral
can be used to graph an object which has a rotation within a rotation, and so on (Fig. 9). In
this case, each next level of rotation is on an incrementally larger scale. To view some of the
higher levels of rotation, one must graph the object's motion over a longer period of time.
This concept can relate to complex motions of a longer period of time. This concept can relate
to complex motions of a large scale found in, for example, the universe. Sine Spiral graphing
can literally be used to graph the motion of every particle in perceivable universe for all points
in observable time, simultaneously (by bending the Z-axis appropriately to accommodate
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changes is axis orientation). Using the Sine Spiral, graphing motion in the Z-axis, or time,
requires one to employ a means to mark or reference the Sine Spiral in order to distinguish
how deep down the Z-axis the motion has traveled.

Without a Sine Spiral, one can only pick three-dimensions to see on a graph for all points
in those dimensions. One could have X, Y, and Z coordinates on a 3D graph all at once, but
only for one point in time per graph. Or one could illustrate motion in any two dimensions
for all points in time using the Sine Spiral, Here are some of the dimensions from which one
can choose: X, Y, Z, and Time. One can have four or more dimensions on a graph by
selecting 3 variables form out of the X, Y, Z, and Time, as well as any number of descriptive,
qualitative, categorical, computational, or other quantitative dimensions. These kinds of
dimensions may appeal/apply to one's senses and could be described in "real" dimensions
such as the Z-axis and others.

With 3D applications using this concept (once improved methods of graphing 3D motion
with the sine spirals are better developed), other more complex spirals can be mapped. Such
3D applications could include the universe in their motion through space throughout all time
to see where certain ones meet or line up), and graphing the motion of particles of a sun
during a supernova (the spiral would look similar to a tangent spiral as described below). The
Sine Spiral may be an improvement in the graphing of nonlinear and linear motion. With the
help of the recent Virtual Reality technology, most any computer can be used to build 3D
models such as Sine Spirals. We can construct and view a Sine Spiral and have complete
control over the graph, viewing it in 3D space as if it were physically here.

There are many new math applications and theorems that may apply to this concept.
Different types of spirals are possible with the general Sine Spiral method. Such shapes could
include the Sine Tube (a sine spiral whose period is infinitely small), the Tangent Spiral
(which uses a sine spiral whose period is infinitely small), the Tangent Spiral (uses the
equation Tan sigma = (y/r)/(x/r) for the x and y coordinates), and the secant spiral (uses sec
sigma = 1/(x/r) for the coordinate and csc sigma = 1/(y/r) for the y coordinate). Also, in either
two-dimensional or three-dimensional motion (when a graphing method is available), an
object can be spinning in a circle within a circle (each level of rotation incrementally bigger
than the previous), and this will make a very special type of Sine Spiral that looks like a spiral
within a spiral within a spiral, etc., depending on how many levels of rotation are going on.
More new math applications are sure to be found that can apply to the Sine Spiral as it is used.

Graphing three-dimensional motion with the Sine Spiral is more difficult to do, but can be
done effectively. Graphing three-dimensional motion using the Sine Spiral needs further
refinement at this time, but will hopefully be available for use in the near future. There are
many new avenues that open up as people figure things out in science and math. The Sine
Spiral may be another door in mathematics ready to be opened up and entered. Through this
door may be a whole new way to look at things, a way to see objects in nonlinear motion from
a standpoint outside of time.
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8. Conical Orbit Graphing
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9. Physics concepts: space compression as gravity such that mass = gravity.

We are currently living in the Holocene epoch of the Quaternary period, of the Cenozoic
era, of the Phanerozoic eon of the Planet Earth 2/3 of the way out on the Orion branch
of the Milky Way Galaxy in the Virgo Supercluster.

"Mass = Gravity" is the starting point of plurality, broken down into variables and
constants from there. Space holds a compression, in that space is potential for motion,
and matter is compressed space so it has an increased potential for motion, and thus a

gravitational attraction to other matter. Also, when space is dilated it repels motion
through it like the wake of a supernova.

Exponent equations can represent space orbits, thus spirals around spirals, and so on.
Deep space position movement could be represented as the motion of rotating along
orbits, such as helices and other spirals.



10. Twine Storage Shelf Knot-work Design

8172010 Justin Coslor
Fartable Shelf Knotwork: Idea
For Appropriate Technology and Survival Kit

[License: Public Domain, free for everyone to Use ]

Start out with
rope of cord or
twine or string
and fold itin
half and tie
double knots
along its length
to hold food or
objects init
like shelf
space, and it
can be carred
in a suvival kit
to go with
camping
supplies.

Fut
clothing
and
s0cks
and
shoes
and tools
and stuff
inloops.
Hoolk it
on a nail
or pole.




11. Rope Folds
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12. Addition Chart Tautology
Addition Chart Possibilities

V+N=Z

1+1=2
w-=1

1+2=3
w-=1



1+8=9
2+7=9
3+6=9
4+5=9
W=4

1+9=10
2+8=10
3+7=10
4+6=10
5+5=10
W=5

1+10=11
2+9=11
3+8=11
4+7=11
5+6=11
W=5

1+11=12
2+10=12
3+9=12
4+8=12
5+7=12
6+6=12
W=6
So it seems that with each even
number and continuing on to the odd
number after it the number of sum
possibilities in the addition chart
increments by one. I will attempt to
form a proof for this if it is true



or not frue or something else.

An application for this could be for
determining cross domain relations for
alternative route mathematics such as for
logic or spoken language such as for
finding how many different ways there are
to form a statement or to describe an
idea or question and what that could be
given an exact methodology.

Notice that small numbers have fewer
addition chart possibilities and that the
larger numbers get the more addition
chart possibilities there are in sequential
pairs.

1+12=13
2+11=13
3+10=13
4+9=13
5+8=13
6+7=13
W=6

1+13=14
2+12=14
3+11=14
4+10-=14
5+9=14
6+8=14
7+7=14
w=7

1+14=15
2+13=15



3+12=15
4+11=15
5+10=15
6+9=15
7+8=15
w=7

1+15=16
2+14=16
3+13=16
4+12=16
5+11=16
6+10=16
7+9=16
8+8=16
W=8

1+16=17
2+15=17
3+14=17
4+13=17
5+12=17
6+11=17
7+10=17
8+9=17
wW=8

1+17-18
2+16=18
3+15=18
4+14-18
5+13=18
6+12=18
7+11=18



8+10=18
9+9=18
W=9

1+18=19
2+17=19
3+16=19
4+15=19
5+14=19
6+13=19
7+12=19
8+11=19
9+10=19
W=9

1+19=20

2+18=20
3+17=20
4+16=20
5+15=20
6+14=20
7+13=20
8+12=20
9+11=20
10+10=20

wW=10

1+20=21
2+19=21
3+18=21
4+17=21
5+16=21
6+15=21
7+14=21



8+13=21

9+12=21

10+11=21
w=10

1+21=22
2+20=22
3+19=22
4+18=22
5+17=22
6+16=22
7+15=22
8+14=22
9+13=22
10+12=22
11+11=22
w=11

Hypothesis:
For All Z not equal to 2
If V+N=Z
Then (V+1)+(N-1)=Z

Given: VN, Z,W are in the Natural Number System
Proof: When Z is even then V+N / Z = 2W
and when Z is odd then V+1 + N-1 = Z such that Z-1 = 2W

Wednesday, November Fourth, Two-Thousand and Nine. Justin M Coslor.
11/04/2009



13. Prime Number Neighborhoods and Prime Number Midpoint Divisors

(C) Copyright Monday, Novermnber 23rd, 2009 by Justin M Coslor
Prime Number Neighbortwods
{prime numbers are depicted as “@" and midpoints are depicted as "—-"}

1@ 63 125 187 249 311g¢  3I73@ 43S 497 559 621
@ 64— 126 188 50 312— 374 436— 498 560— 622
I 65 127@ 189 251G 3134  37s 437 49%@ 561 623
4— &6 128 190 257 314 376— 438 500 SB2 624
LT 67 129~ 191@ 253 315— 377 439  501— S563@  625—
6— 6a 130 192  254— 316 378 440 502 564 626
@ 65— 131 193@ 255 317@  3THE  4491--  503@ 565 627
8 70 132 194 256 318 280 242 504 566--- 628
G i@ 133 195-  Z57T@® 319 381---  443E 505 S6T 629
10 T2 134— 196 758 3z0 382 444 506--  S68 630
118 Ta@ 135 197&@ 259 3z1 382@ 445 507 569@ @ 63ILE
12 74 136 188—  ZEO-- 3zz2 384 446--- 508 5T0= 632
13& 75 1375 199 261 323 385 447 509@ STl@ @ 633
14 Fhiemn 138— 200 262 324 A6 448 510 572 a3
- T 1360 201 2633 325 3BT 449 511 573 G35
16 78 140 202 264 326 388 450 51z 574—  BI6—
17@ 79 141 203 265 327 Igag 451 513 575 637
18- &0 142 204 266 328 390 452 514 576 638
19@ 81— 143 205 267 329 391 453— 515— ST 630
20 B2 144-- 206 268 330 392 454 516 5TH 640
11— B3ED 145 207 269G 331@ 393  4ss 517 579 841
22 B4 146 Z08 270— 332 394 456 518 580 642—
23 &8s 147 209 271 333 385 45Ty 518 581 643%
24 86— 148 210 272 334— 396 458 520 S82— 644
5 g7 149@ 211 273 335 397@® 459  521@ 583 645
26— g8 150--- 212 274— 336 398 460 522 584 646
27 B 151@ 213 275 3F3/@  399--- 46LE  523@ | SES GATE
78 0 i52 214 76 3zs 400 462--- 524 586 648
293 31 153 215 27T @ 339 401L@  463@ 525 S87E 549
B0 S92 154— 218 278 340 402 464 526 588 G5 Dnn
L@ - B 155 217— 279--- 341 403 465 52T 589 651
3z Q4 158 218 2B0 A4 e 404 466 L8 S04 --- 852
33 95 1575 219 2Bl 343 A1) S 4670 529 591 G530
34--- %6 158 220 2EHE - 344 406 4686 530 592 &54
a5 7@ 154 221 283@ 345 407 469 531 E93g 655
36 98 160— 222 284 346 408 470 532— S04 56—
vl $G--- 161 223@®% 245 34T 400 AT 533 545 657
3 14 162 224 286 348 410 472 534 596— 658
39— 10l 163@  225-- 287 349 411 473—  E3% 597 GO
40 102-—- 164 2E6 ZBE—  350— 412 474 535 554 GE0—
41 103g  165--- 227@ 280 351 413 475 537 599@ @ G661
42— 104 166 228 290 352 414—- 476 538 60— 662
43 105-— 167@  229@ @ 291 3s3g 415 477 53% €01® 663
44 106 168 230 292 354 416 478 540 602 664
45— 107@ 169 231w 2930 355 417 479@ 5418 603 665
46 108  170-- 232 Zod 356-- 418 480 542 604---  GEE
47 @ lo9@ 171 233G 295 357 4193 481 543 605 65T---
48 110 172 234 296 358 420--- 482 584--  GO6 668
49 111-- 173 235 297 353 4213 | 483 545 B07@ 669
50 112 174 236— 208 360 422 484 546 608 670
51 113@ 175 237 299 361 423 485 547@ 609 671
52 114 176— 238 300--- 362 424 486 548 610 67e
53 115 177 239 301 IGI— 425 487T@ 549 611 673G
54 116 178 240— 302 364 426— 488 550 612 674
55 117 179@  241@ 303 365 427 d88—  BE} 613@  B75—
56— 118 180 242 3004 366 428 490 552 &14 676
57 119 1518 243 305 IGTE 429 491 553 815—  &77@
5& 1z0-— 182 244 3005 368 430 482 554 616 678
59 121 183 245 307 369 4313 493 555 617 679
60— 122 184 246--- 308 3IF0— 432 494 556 618—  GB0—
1 123 185 247 3oe— 371 433® 485 557@  E18& 681
62 124 186.-- 248 310 a7z 434 196 558 620 G682

So it seems that the midpoints of odd odd spacings are divisible by 3 (with the exception
of spacings of size 11+12n), and the midpoints of even odd spacings are divisible by 2, and
the midpoints of Twin Primes are divisible by 6.



2/7/2011 Justin M Coslor
Prime Number Representation

"Prime numbers are bridges that connect the Rational Number System
to the Natural Number System."

It is possible to represent numbers in the manner of putting each decimal place along a
perpendicular number-line like cubes of cubes, etc. For example, if we want to represent all
two-digit prime numbers we can make the Y axis represent the least significant digit for O
through 9 and the X axis can represent the second least significant digit for O through 9,
and that way we can place a point at each XY intersection to represent two-digit numbers
as 00 through 99. If we want to represent three-digit numbers we can make an XYZ grid
like a stack of ten XY grids, such that the Z axis represents the third least significant digit
as O through 9 to represent number OO0 through 999. When X = O through 9, and Y = O
through 9, and Z = O through 9; a row of ten such XYZ cubes numbers can represent four
digit numbers. Ten columns of ten rows of XYZ cubes can be used to represent numbers
that have five digits. An XYZ cube made of one-—hundred XYZ cubes could represent
numbers up to six digits in length. That pattern can continue, or be programmed in terms of
a multidimensional memory array. Prime Numbers could be represented in that manner.



14. Solid Number System

201008 26-Coslor-Justin-M--Solid-Humbers

COMPLEX MUMBER= "
REAL MUMBERS ™
( IRRATIOMAL MUMBERS j
& -
RATIOMNAL MUMBERS
.
IMTEGERS
" -
MATURAL MUMBERS
© -,
FACTORIAL MUMBERS
.
SOLID HOMEBERS
FRIME MUMBERS COMPOSITE
MUMBERS
- Iy
o -
* i
- i,
= B,
& -
- %,

2000825-Coslor-Justin-M--Solid-Mumbers

‘what if we introduce the concept of a solid number as the product of all prime numbers up to any particalar natural number? Ewould be similar
to & Factorial but would not repeat any prime number multiple times inits divisibilit. Solid numbers would therefore be a subset of the natural
number system, and prime numbers would therefore be a subset of the solid number system. For example: anongaing list of all sequential
zalid numbers would start out as follows. | [prime solid numbers are in parenthesis far clarity.] ...

[EL3L 56T (131405, 017),[19),21,22,[23),26,[29),30,[ 31), 33 etc. 4,8,9,12,16,18,24,25,27,32 etc are not solid numbers because they are
divizible by one or more prime number exponents whose exponent is 2 or larger, thus those are prime repetitions, and therefore not salid.



15. PICForm combined with the Dewey Decimal System

20100909 Justin Coslor

Qualitative and quantitative dimensions form variables.
Networks of variables form patterns.

Networks of patterns form contexts.

20101102 Justin M Coslor --- PICForm Control Structure for Search Engines

| had an idea recently about a control structure for PICForm (Possibility Thinking: Explorations
in Logic and Thought, ISBN: 9780615242651), and | was thinking that it could add some
fine—grained epistemological control to forensic science, law, and library science, particularly
when used in conjunction with the Dewey Decimal System. The PICForm control structure
could also be used for the design of a computerized search engine. It goes something like
this: ABC.DEF.GHI and could be recursive. Question marks replace any of the parts of it not
used in a particular instance.

Cross-Domain Relations go from domain to domain where the range is the same.

(CDR's link domains whose range overlaps.)

is the cross-domain relation that relates context D to context F.

is the context that pattern ABC is part of.

is the context that pattern GHI is part of.

is the word-sense-triangulation operator that relates variable A to variable C.
is the word-sense-triangulation operator that relates variable G to variable I.
is a qualitative variable. C is a quantitative variable.

O > T ™ T o m

is a qualitative variable. | is a quantitative variable.

In ABC.DEF.GHI, E --> ABC : D :: GHI : F
Such a structure could relate knowledge structures
from one Dewey Decimal System book to another.
PICForm is patterns in contexts formalized, and is
for formalized epistemological knowledge representation.

© Copyright 2009 by Justin Coslor
Patterns in Contexts, a theory of knowledge representation.

Information, by its very nature, is a division. Yet it strives to become
whole again, and at the very least, to become balanced. If knowledge is
represented as patterns in contexts, then thinking might be learning, applying,



and organizing that knowledge, creatively or otherwise.

Analogies mimic patterns across contexts via Cross-Domain Relations.
Cross-Domain Relations go from domain to domain when the range is the same, as
an overlap. That is the basis of Analogical Reasoning. As Aristotle said in the
first paragraph of his book 'Poetics’, "The arts are mimicry." Perhaps the Arts
are like patterns, and the Sciences map the contexts. Science is about setting goals and
asking networks of questions to experimentally explore the unknown using logic and
methodology such as computation and reason. Context is one kind of framework.

Contexts are composed of configurations of patterns (a setting, like a
continuum of text). Patterns are composed of configurations of variables.

Variables are composed of configurations of first principle dimensional

properties, such as quantifiers and qualitative adjective descriptive

comparisons. Their application via relational frameworks (such as semantics and
syntax, or operator systems) can simulate the meat of metaphor, as two analogies
juxtaposed by similar relational frameworks that form a cross-domain relation in

an overlap of meaning or intention or something else.

If data has recognizable features, then it is a pattern. Repetition is
what makes a symmetry. Repetition makes a pattern's features recognizable.
Information is a symphony of symbolism and symmetry. Every pattern in every
context is unique to the properties and axioms of the contexts that they exist
in. An axiom is a self-evident truth.

A symmetry is an example of an internal algebra. Unique symmetries have
a prime number of repetitions or symmetry partition sections. Prime numbers are
the balance points in the Universe. Unique symmetries are atomic repetitions,
and are the simplest form of patterns, distinct from perceptually apparent
random chaos. | do not believe in ultimate randomness. | do believe that there
are many reasons for everything.

All truth is but an approximation of a deeper truth. Knowledge is
information that contains meaning. Language is permutations of semantics,
governed by syntax and context, with meaningful intention. Yet people tend to
not see patterns that they are not shown. We are surrounded by answers, but they
are all meaningless and are often impossible to detect without knowing at least
some of the questions that their existence is derived from. Without a question /
answer connection, there is no consciousness, and awareness would not exist.
Awareness is not the same as instinct.



